Examining Effects of Ammonium Citrate Immersions on Paper

Laura R. Hashimoto
hashimoto.laura@gmail.com
Queen’s University
Art Conservation Program
Department of Art
April 2015

Introduction

Ammonium citrate has been used primarily for the surface cleaning of paintings and in the removal of metallic staining on marble and leather objects. It is a strong chelating agent whose dibasic and tribasic forms are easily adjustable for neutral and basic pH levels. This recommends it for use in paper conservation to solubilize and remove acidic soiling and staining possibly related to a metallic charge. Based on Antoinette Dwan’s techniques and studies on the use of ammonium citrate for the removal of these constituents in paper objects, this research was interested in the physical and chemical changes occurring after paper samples were treated with immersion solutions followed by thermal accelerated aging. The research compared the application of excessive w/v solutions of ammonium citrate to established aqueous deacidification and alkalization washing practice. Future research may focus on comparing ammonium citrate applications to solvent and bleaching treatments and their general and desired effects in reducing soiling and staining in paper.

Materials

• Ammonium citrate tribasic A1332 (TAC)
• Saturated calcium hydroxide (Ca(OH)₂)
• Whatman no. 40 filter paper
• Blue-dyed rag ledger paper (c. 1850)
• Newsprint (c. 1915)

Methods of Analysis

• Visual assessment
• Zero-span breaking strength
• Spectrophotometry
• Fourier transform infrared spectroscopy (FTIR)
• X-ray fluorescence spectroscopy (XRF)
• pH measurements

Results & Discussion

Treatment Designation	Experiment	Procedure
C1 | Untreated | Control; half of set aged in tubes 14 days at 90°C
C2 | Alkaline wash | Distilled water immersion at pH 8 with Ca(OH)₂; half of set aged in tubes 14 days at 90°C
T1 | Alkaline wash + 1% w/v TAC solution | Distilled water immersion at pH 8 with Ca(OH)₂; 1% w/v TAC immersion pH 7-8; clearance with distilled water immersion at pH 8 with Ca(OH)₂; half of set aged in tubes 14 days at 90°C
T2 | Alkaline wash + 3% w/v TAC solution | Distilled water immersion at pH 8 with Ca(OH)₂; 3% w/v TAC immersion pH 7-8; clearance with distilled water immersion at pH 8 with Ca(OH)₂; half of set aged in tubes 14 days at 90°C
T3 | Alkaline wash + 10% w/v TAC solution | Distilled water immersion at pH 8 with Ca(OH)₂; 10% w/v TAC immersion pH 7-8; clearance with distilled water immersion at pH 8 with Ca(OH)₂; half of set aged in tubes 14 days at 90°C

Acknowledgements: Many thanks to Antoinette Dwan for her generous dissemination of research and experience without which this research would not have been possible; Pamela Young for her encouragement and support; Paul Bégien & Season Tse for their expertise and assistance; Michael Doutre, Dr. Alison Murray, Scott Williams, Rosaleen Hill, & Dr. H.F. (Gus) Shurrell for their expert guidance.